
VOCABULARY

Parallelogram a quodr's lotteral w/ both pairs of opposite sides parallel

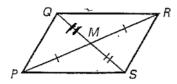
THEOREM 6.2

If a quadrilateral is a parallelogram, then its **opposite sides** are congruent.

$$\overline{QP} \cong \overline{RS}$$
 and $\overline{SP} \cong \overline{RQ}$

THEOREM 6.3

If a quadrilateral is a parallelogram, then its **opposite angles** are congruent.

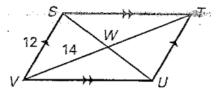

$$\angle P \cong \angle \underline{R}$$
 and $\angle \underline{Q} \cong \angle S$

THEOREM 6.4

If a quadrilateral is a parallelogram, then its **consecutive angles** are supplementary.

THEOREM 6.5

If a quadrilateral is a parallelogram, then its diagonals **bisect** each other.


$$\overline{QM} \cong \underline{SM}$$
 and $\underline{PM} \cong \overline{RN}$

Example 1: Using Properties of Parallelograms

STUV is a parallelogram. Find the unknown length.

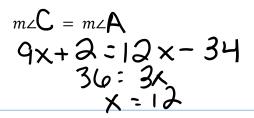
Solution

a.
$$TU \cong \underbrace{\$}_{TU} = \underbrace{12}_{WT}$$

b. $WT \cong \underbrace{\$}_{WT} = \underbrace{14}_{WT}$

Example 2: Using Properties of Parallelograms

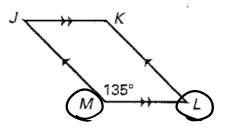
JKLM is a parallelogram. Find $m \angle L$.

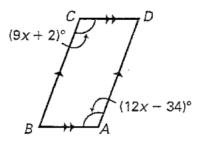

Solution

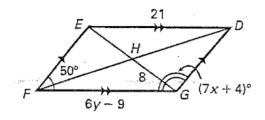
 $m \angle L + m \angle M = N O^{\circ}$ $m\angle L + \underline{35}^{\circ} = \underline{15}^{\circ}$ $m\angle L = \underline{45}^{\circ}$

Example 3: Using Algebra with Parallelograms

ABCD is a parallelogram. Find the value of x.

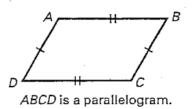

Solution




Use parallelogram DEFG to answer the following.

- 1. Find $m \angle D$. = M $\angle F = 50^{\circ}$

- 2. Find *EH.* = HG = 8 3. Find y. 6y 9 = 21 y = 54. Find x. 7x + 4 + 50 = 180 x = 18



THEOREM 6.6

If both pairs of opposite \underline{Sldes} of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

THEOREM 6.7

If both pairs of opposite $\underline{(MQ)}C$ of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

D

ABCD is a parallelogram.

THEOREM 6.8

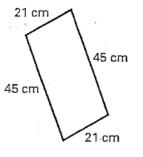
If an angle of a quadrilateral is <u>SUpplementary</u> to both of its consecutive angles, then the quadrilateral is a parallelogram.

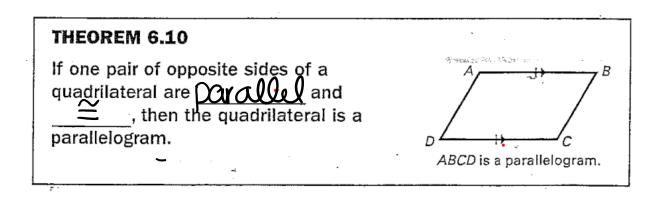
 $(180 - x)^{\circ}$

ABCD is a parallelogram.

THEOREM 6.9

If the diagonals of a quadrilateral 0 such each other, then the quadrilateral is a parallelogram.


ABCD is a parallelogram.


5.

Example 1: Proof of Theorem 6.8 **Given:** $\angle I$ is supplementary to $\angle K$ and $\angle M$. **Prove:** *JKLM* is a parallelogram. Statements Reasons **1.** $\angle J$ is supplementary to $\angle K$. 1. Given 2. Consec. int <s = 180° — lines are parallel 2. JM || KL **3.** $\angle J$ is supplementary to $\angle M$. 3. Given 4. JK ML 4. Consect. Int Ls = 180 **5.** *JKLM* is a parallelogram. 5.

 \mathbf{V} A pane in a stained glass window has the shape shown at the right. How do you know that the pane is a parallelogram?

both pairs of opposite sides are congruent

Example 2: Using Properties of Parallelograms

Show that A(1, 3), B(3, 5), C(9, 1), and D(7, -1) are the vertices of a parallelogram.

Solution

Method 1 Show that opposite sides have the same slope.

Slope of \overline{AB} :

Slope of \overline{BC} :

$$\frac{1}{2} = 1$$
 $-\frac{3}{3}$

Slope of \overline{CD} :

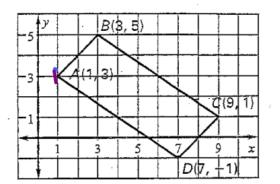
Slope of \overline{AD} :

2

Method 2 Show that opposite sides have the same length.

$$AB = \sqrt{(3 - 1)^{2} + (5 - 3)^{2}} = \sqrt{8} =$$

$$BC = \sqrt{(9 - 3)^{2} + (1 - 5)^{2}} = \sqrt{52} =$$


$$CD = \sqrt{(9 - 7)^{2} + (1 - (-1))^{2}} = \sqrt{8}$$

$$AD = \sqrt{(7 - 1)^{2} + (-1 - 3)^{2}} = \sqrt{52}$$

$$(6^{2} + (-4)^{2}) = \sqrt{52}$$

Method 3: Show that one pair of opposite sides are congruent and parallel.

Slope of
$$\overline{AB}$$
 = Slope of \overline{CD} = _____
 $AB = CD = 2.8$
 \overline{AB} and \overline{CD} are parallelogram. $\xrightarrow{\sim}$ _____ So, ABCD is a _____

